
1 Making K-12 Computer Science Accessible March 8, 2017

Making K-12 Computer
Science Accessible
Proceedings of an AccessCSForAll

Capacity Building Institute

March 8, 2017
Seattle, WA

2 Making K-12 Computer Science Accessible March 8, 2017

3 Making K-12 Computer Science Accessible March 8, 2017

Proceedings of the March 2017
AccessCSForAll Capacity Building
Institute (CBI)
This publication shares the proceedings of a CBI entitled Making K-12 Computer Science Accessible.
The content may be useful for people who

• participated in the CBI,
• teach Exploring Computer Science (ECS), Computer Science Principles (CSP), or another K-12

computing course,
• train teachers of K-12 computing courses,
• seek to increase their understanding of issues surrounding the participation of students with

disabilities in computing education and computing careers,
• would like to access resources to help make their courses, services, and activities more

welcoming and accessible to students with disabilities, or
• have promising practices to share with others.

About AccessCSForAll

AccessCSForAll: Including Students with Disabilities in Computing Education for the Twenty-First Century
(AccessCSForAll) works to increase the successful participation of students with disabilities in
K-12 computing courses. Central to this work is partnerships with other projects funded by the
Computing Education for the 21st Century program of the National Science Foundation (NSF)
Directorate for Computer and Information Science and Engineering (CISE) and other organizations

4 Making K-12 Computer Science Accessible March 8, 2017

that train computer science teachers and develop curricula for ECS and CSP. AccessCSForAll is led by
the Department of Computer Science and Engineering and the DO-IT (Disabilities, Opportunities,
Internetworking, and Technology) Center at the University of Washington (UW) and the Department
of Computer Science at the University of Nevada, Las Vegas. It is funded by CISE (Grant #CNS-
1440843 and #CNS-1440878).

AccessCSForAll focuses on the inclusion of students with disabilities in these courses through two
objectives:

• building the capacity of K-12 computing teachers to serve those students through professional
development for trainers who provide professional development to teachers, curricular units,
online tutorials, virtual communities of practice for teachers, and real-time, individual teacher
support; and

• creating accessible materials, both tools (including iterative refinement and deployment of the
Quorum language) and curricular units, that K-12 computing teachers and students can use in
their classrooms.

The ultimate goal of AccessCSForAll is to increase the participation of people with disabilities in
computing academic studies and careers and to enhance those fields with their unique perspective
and expertise.

5 Making K-12 Computer Science Accessible March 8, 2017

Contents
About the CBI ..7

CBI Agenda ..9

Presentation Summaries ...11

Working Group Summaries ...21

Communities of Practice ..25

Resources ..27

Acknowledgments ..29

6 Making K-12 Computer Science Accessible March 8, 2017

7 Making K-12 Computer Science Accessible March 8, 2017

About the CBI
The Making K-12 Computer Science Accessible CBI, sponsored by AccessCSForAll, was held in
Seattle, WA on March 8, 2017, as a presymposium workshop of the annual Association for Computing
Machinery’s (ACM) Special Interest Group on Computer Science Education (SIGCSE) Technical
Symposium. Its purpose was to encourage and support efforts to make K-12 courses more welcoming
and accessible to students with disabilities. Attendees included postsecondary faculty, individuals
who provide professional development for K-12 teachers, secondary teachers, disability services
professionals, and individuals with disabilities.

As is typical of a CBI
• All participants contributed to its success.
• Speakers participated in group discussions.
• Experts in all topic areas were in the audience.
• Participants gave presentations and participated in large and small group discussions.
• Some predetermined professional development was presented and new content was delivered

as the meeting unfolded.
• Participant interests were expressed and expertise was made known.

The CBI provided a forum for discussing recruitment and access challenges, sharing successful
practices, developing collaborations, and identifying systemic change initiatives for increasing the
participation of students with disabilities in ECS and CSP courses.

8 Making K-12 Computer Science Accessible March 8, 2017

Topics discussed included
• universal design of instruction (UDI) and academic accommodations;
• accessibility of programming environments;
• technology and accessible IT design;
• alternative non-visual development projects for students with disabilities; and
• best practices for making courses welcoming and accessible to students with disabilities.

The agenda for the CBI, summaries of the presentations, and working group discussions are provided
on the following pages.

9 Making K-12 Computer Science Accessible March 8, 2017

CBI Agenda
Wednesday, March 8

8:30 AM Introductions & Breakfast

9:00 AM Presentation: Including Everyone in CS for All
Richard Ladner, University of Washington & Andreas Stefik, University of
Nevada Las Vegas
Video: How Can We Include Students with Disabilities in Computing Courses?

9:45 AM Presentations: Accessibility of Programming Tools
• Accessible Blockly Library – Cory Diers, Google
• Blocks4All: Making Block Languages Accessible Using a Touchscreen –

Lauren Milne, University of Washington
• Tangibles + Audio Stories = Programming + Fun – Varsha Koushik,

University of Colorado Boulder
• Accessibility in Bootstrap – Kathi Fisler, Worcester Polytechnic Institute &

Bootstrap

11:00 AM Presentations: Accessibility of Curriculum
• Universal Design of Learning via Panopto – John Dougherty, Haverford

College
• Students with Cognitive Disabilities – Maya Israel, University of Illinois

10 Making K-12 Computer Science Accessible March 8, 2017

• Multisensory CS Instruction to Provide Access to Students with Invisible
Disabilities – Meg Ray, Cornell Tech

• Accessible CSP for Students with Learning and Attention-Based Disorders –
Sarah Wille, University of Chicago

• Dyslexic Children Programming: Overcoming Barriers Through Better
Interaction– Rob Thompson, University of Washington

12:30 PM Lunch

1:30 PM Discussion: Strategies for Improving Accessibility

2:15 PM Divide into Working Groups

3:00 PM Working Groups: What Can You Do to Improve Accessibility of Your Materials?

4:15 PM Report-outs From Working Groups

4:45 PM Evaluation & Wrap Up

11 Making K-12 Computer Science Accessible March 8, 2017

Presentation Summaries
Accessible Blockly: Making a Visual Coding Environment Accessible

By Cory Diers, Kevin Chao, and Yi-Yi Kung

Blockly is a library for creating visual programming editors. It’s easy to use because a student doesn’t
have to know syntax in order to program, and Scratch and Code.org are promoting it. We want to
make Blockly Games accessible to blind students. A lot of kid-facing user experience (UX) relies on
visual metaphors to restructure forms of knowledge. How might we make a highly visual UX design,
like the one in Blockly, accessible to those who are visually impaired?

This presents a variety of design challenges:
• We chose to develop a separate accessible web version because of the following:

1. Blockly uses lots of java script; it’s not your usual mostly-HTML webpage.
2. The heavily-visual puzzle-block user interface (UI) doesn’t necessarily translate well to

blind users.
• Existing games don’t really make sense non-visually.

Accessible Blockly can be used to make a music game. It utilizes HTML to translate Blockly’s stacks
of blocks into a nested table view that can be easily walked by a screen reader. We found a challenge
was getting used to the UI and how to do simple operations. So, we built some tutorial levels to
introduce users to the basics of manipulating blocks, and a main game with levels that build on each
other to produce the entire tune to Frere Jacques. Along the way, they learn sequential execution and
for loops.

12 Making K-12 Computer Science Accessible March 8, 2017

Still, there are multiple UI challenges, including the following:
• Moving blocks from toolbox to workspace
• Instructions need to be clear but non-verbose
• In the workspace, one island or multiple islands?
• Orientation: how do students know “where they are”?

We did some UX research with students from the California School for the Blind. We found that
kids weren’t as familiar with using screen readers than we expected them to be. The auditory
music component of the game was very useful for kids who used the auditory feedback to hear if
they had correctly written their program. Kids struggled with navigating the tree structure of the
interface. Kids had trouble understanding the relationship between the components of the interface,
particularly the toolbox-workspace relationship.

We took this feedback into account, and iterated on the design. Out next iteration will introduce
screen reader functionality before jumping into Blockly proper. We suspect this will make it easier to
jump into navigating “full” Blockly. We also had problems with the three-column design, and opted
for a two-column design, where the “toolbox” is now its own dialog under the menu. Navigation
is easier in this system, since it’s harder to accidentally find yourself switching from workspace to
toolbox and back. We also decided to replace the “copy-paste” metaphor with linking. “Marking a
spot” and placing a block there proved to be a more intuitive UI for our users in our second test.

Blocks4All: Making block languages accessible using a touchscreen

By Lauren Milne

Block programming environments such as Scratch and Blockly, are popular educational tools to
teach children how to program, as they allow children to avoid learning syntax and focus instead
on logic and common programming concepts. However, current block programming environments
rely heavily on visual aspects: the blocks are pieces of code that act like puzzle pieces that fit together
only if the code is syntactically correct. These visual aspects are inaccessible to blind children, so these
children are being left behind their peers in access to computer science education. We are exploring
to make these types of programs accessible to blind children using a touchscreen tablet and have
developed a prototype.

Tangibles + Audio stories = Programming + Fun

By Varsha Koushik

Visual block programming languages like Scratch, Blockly, and Snap are a popular way of introducing
kids to programming. However, a visual programming environment with graphical presentations for
blocks, program creation, and program execution is inaccessible to visually impaired users.

Can programming become more accessible to visually impaired users?
Non-visual programming research has gained momentum in the recent past. Quorum [1] is an
evidence-based programming language that is used by both sighted and non-sighted users.
BraillePlay [2] explores the use of touch screens for block languages. Pseudo Blocks [3] is a pseudo
spatial blocks language that uses keyboard navigation and synthetic speech to create programs.

13 Making K-12 Computer Science Accessible March 8, 2017

Screen-based approaches require proficient screen reader knowledge and majority of visually
impaired kids are novice users. Block shapes still remain a constraint for visually-impaired users to
learn block languages.

Can tangibles indicate shapes more intuitively?
Osmo system [4], Project Bloks [5], and Project Torino [6] use iPad, pucks, and baseboards to create
programs and electronic components. Of these approaches, Project Torino explores sighted and non-
sighted user collaboration. Compelling audio feedback remains a limitation to these approaches.
Stories are often used as a learning tool for visually impaired kids. Alice [7] and StoryTelling
Alice [8] have used stories to teach programming using a 3D visual environment.

Can a tangibles and audio stories be used to teach programming?
Our system uses a set of characters with interesting sound effects and voice outputs. We have
designed physical pieces that are intuitively identifiable, convey program flow, and follow features of
blocks language. Programs are sequential with each line of the program being a combination of nouns
and verbs. A base with distinctively shaped sockets are used for program creation. Audio feedback
and associated sound effect is provided for each interaction in the program. Unique reactivion
tags are attached to each piece and computer vision is used to track interactions in real time. Using
this system we want to teach programming concepts like loops, conditions, program flow and
subroutines. This system will be part of group classroom activities along with structured activities.
In the future, we envision this system to be used a scaffolding tool for advanced programming
languages. We also want to include braille to encourage braille literacy and provide features to share
work online. We also want to integrate this system into other domains like math, science, and music.

Questions we are looking to get feedback on are listed below:
• How to forefront programming concepts?
• How can this be used as a scaffolding tool for advanced programming?
• Ideas for activities using this tool?
• How can it be tied to other domains?
• How to evaluate with end users or teachers? How can we get teachers excited about this?

References
1. Stefik, A., & Siebert, S. (2013). An empirical investigation into programming language syntax.

ACM Transactions on Computing Education, 13(4), 19.
2. Milne, L. R., Bennett, C. L., Ladner, R. E., & Azenkot, S. (2014, October). BraillePlay:

educational smartphone games for blind children. In Proceedings of the 16th International ACM
SIGACCESS conference on Computers and Accessibility (pp. 137-144).

3. Koushik, V., & Lewis, C. (2016, October). An Accessible Blocks Language: Work in Progress. In
Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility
(pp. 317-318).

4. Horn, M. (n.d.) Osmo System. Retrieved from https://www.playosmo.com/en/
5. Google. (n.d.) Project Bloks. Retrieved from https://projectbloks.withgoogle.com/
6. Morrison, C. (n.d.) Project Torino. Retrieved from https://hxd.research.microsoft.com/work/torino.

php
7. Pausch. (n.d.) Alice. Retrieved from http://www.alice.org/index.php
8. Kelleher. (n.d.) StoryTelling Alice. Retrieved from http://www.alice.org/kelleher/storytelling/

https://www.playosmo.com/en/
https://projectbloks.withgoogle.com/
https://hxd.research.microsoft.com/work/torino.php
http://www.alice.org/index.php
http://www.alice.org/kelleher/storytelling/

14 Making K-12 Computer Science Accessible March 8, 2017

Supporting Visually-Impaired Programmers through Bootstrap

By Kathi Fisler, Bootstrap

The Bootstrap team has been working to make our programming tools work effectively with screen
readers. This presentation describes our progress and some of the underlying techniques that we’ve
used.

Unlike many curricula, Bootstrap programs produce a variety of rich outputs, including video games,
physics simulations, reactive applications, images, and tabular data. We link these to screen readers
using data annotations that present the structure of a constructed output. To build these annotations,
we modify the runtime system of our programming language. Controlling the language runtime
(since we implement our entire language stack) has greatly simplified the task of providing rich
structural descriptions of outputs.

We are also developing techniques to help people use audio to structurally navigate code, including
programs that fail to parse due to syntax errors. Rather than read code symbol by symbol, we
annotate code with structural summaries that users can expand as appropriate. The syntax of our
programming language allows us to create structural summaries and handle code with syntax errors
more easily than in many other programming languages.

More details are available on the Bootstrap blog at www.bootstrapworld.org/blog/index.shtml.

UDL with Panopto

By John P. Dougherty

Universal design in learning (UDL) promotes the design and usage of flexible, often complementary,
environments that accommodate individual student differences in learning [2]. Panopto (www.
panopto.com) is a software tool for lecture capture that provides a recorded live presentation
synchronized with computer projection. We demonstrate how Panopto, in conjunction with a
learning management system (LMS) such as Moodle, provides a temporally disconnected means for
students to re-engage with classroom meetings that may not be completely or effectively accessed
in real-time. Features of this approach include portability (i.e., the instructor needs only a web
camera with microphone mounted on a tripod pointing at the board), along with easy to use by both
instructors and students. We find the system is inexpensive, assuming your institution already has an
LMS and access to Panopto, as well as in class projection and Internet. Once “debugged,” the system
is also quick to use.

We spend time at the start of (and periodically throughout) the course emphasizing the role and
responsibility of learning for all students, including those who may need accommodation of any
kind. We then introduce lecture capture as a means to provide an alternative way to view the course
material that should supplement (i.e., not replace) course meetings. We were initially uncomfortable
with such raw presentations made permanent as there was no explicit time set aside (or available) to
rehearse, but it became necessary to get over this fear and embrace the chaos, if only so students will
see that struggle is often needed for mastery learning [1].

www.bootstrapworld.org/blog/index.shtml
www.panopto.com

15 Making K-12 Computer Science Accessible March 8, 2017

Preliminary results suggest that although the captured lectures are available to everyone enrolled in
the course, only a small percentage (~22 %) use the system consistently. As expected, usage increases
closer to the midterm examination time in Figure 1, as well as a midterm examination towards the
end of Figure 2 (which only covers the first part of a course in progress). Survey responses indicate
that the captured lectures are seen as having a positive impact on students’ perceived learning.

16 Making K-12 Computer Science Accessible March 8, 2017

In conclusion, we offer this approach as satisfying the goals of UDL by providing another means
to review materials that is available to everyone with the hope of supporting whomever needs this
type of access. We do not present Panopto as a UDL panacea, but more as a simple and potentially
effective way to increase course access. We also recommend the following for instructors:

• Commit: For each class, get there early and end a bit early.
• Prepare students: Explain why you are capturing the lecture.
• Prepare for lecture: Slides will help guide lecture, and can be made available to students prior

to the course meeting; one might even prepare interactions (e.g., program development and
execution).

• Get over shyness: If people can watch you in person, then it is fine on video.

References
1. Ames, C. & Archer, J. (1988). Achievement goals in the classroom: Students’ learning strategies

and motivation processes. Journal of Educational Psychology, 80(3), p.260.
2. Rose, D. H., Meyer, A., Strangman, N., & Rappolt, G. (2002). Teaching every student in the digital

age: Universal design for learning. Alexandria, VA: Association for Supervision and Curriculum
Development.

Students with Cognitive Disabilities and CS Education

By Maya Israel

Both student-specific challenges and instructional challenges make computing challenging for
students with cognitive disabilities (learning disabilities and autism spectrum disorders). We are
taking steps towards addressing these challenges.

Learning disability (LD) is a difference in one or more of the basic psychological processes involved
in understanding or in using language, spoken or written, that may manifest itself in a limited ability
to listen, think, speak, read, write, spell, or to do mathematical calculations, including conditions
such as perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and developmental
aphasia. Students may have specific learning disabilities in oral expression, listening comprehension,
written expression, basic reading skills, reading comprehension, mathematics calculation, or
mathematics reasoning.

Autism spectrum disorder (ASD) is a developmental disability significantly affecting verbal and
nonverbal communication and social interaction. It is generally evident before age three and may
adversely affects a child’s educational performance. Other characteristics include engagement in
repetitive activities and stereotyped movements, resistance to environmental change or change in
daily routines, and unusual responses to sensory experiences.

Instructional challenges for teaching computing to this population include the following:

• Students with disabilities often miss part or all of computer science classes for various reasons.
• Paraeducators and instructional aids have little or no background in the subject, do not have

access to lesson plans, and receive little guidance on how to help with computer science
instruction.

• Computer science teachers may not understand disabilities or accommodation, have an entire
class of students to teach, and may not be familiar with pedagogical approaches that are
helpful to students with disabilities.

17 Making K-12 Computer Science Accessible March 8, 2017

• Between instructional challenges (inaccessible curricula, low expectations, and a lack of
strategies) and computing-specific challenges (ill-defined problems, multi-step complex
problems, and open exploration), many students with disabilities are being set up for failure.

• There needs to be communication regarding curriculum and student needs that include the CS
teacher, paraeducators, and special educators.

Suggestions for Instructional Aides/Paraeducators
• Environmental Considerations: Placement Matters

 □ If possible, students with disabilities should be seated alongside peers rather than
segregated together in the back of the class. This sets the stage for peer collaboration.

• Professional Knowledge:
 □ Ask the computer science teacher to see lesson plan ahead of time if possible.
 □ Clarify the big ideas of the lesson.
 □ Communicate with the special ed teacher about about how accommodations and supports

from other content areas (e.g., math and science)

Suggestions for computer science teachers Teachers
• Build a culture of collaboration

 □ Think about structured collaboration
• Consider using universal design for learning to build flexibility in how content is taught and

how students demonstrate understanding
• Communicate with the special educators about what works in other content areas

 □ What strategies work during math and science?
 □ What accommodations are provided
 □ How can the paraeducator/aide best be used to support the student?

For more information, visit ctrl.education.illinois.edu.

Multi-sensory Computer Science Instruction to Provide Access to
Students with Invisible Disabilities

By Meg Ray

Across the K-12 spectrum and in every classroom setting, whether it’s special education, a
mainstream classroom, a gifted and talented program, or a program for English language learners, it’s
likely that you’ll have students with invisible disabilities. There are a range of invisible disabilities
including emotional and behavioral disorders, learning disabilities, attention deficits, autism
spectrum disorders, mild cognitive impairments, mild developmental delays, processing disorders,
and speech and language impairments. Utilizing a variety of pedagogical frameworks including
multi-sensory instruction, universal design of learning, K-12 CS frameworks and standards, and
positive behavioral interventions and supports can help to support these students.

Strategies to consider vary depending on grade level:
For Kindergarten through second grade

• Singing
• Skits & role playing
• Figures or pictures of bugs
• Tangible connections

ctrl.education.illinois.edu

18 Making K-12 Computer Science Accessible March 8, 2017

For third grade through fifth grade
• Programming movement
• Multiple types of code
• Block code images and manipulation
• Concrete to abstract

For sixth through eighth grade
• “Traditional” and digital making
• Connect programs to the physical world
• Multi-language platforms
• Program visual and oral reports

For ninth through twelfth grade
• Markup/Syntax cubes
• Human markup/syntax
• “Tagging” the classroom
• Accessible cheatsheets, card decks, anchor charts
• Interdisciplinary projects
• Use for markup or syntactic programming languages

Accessible Computer Science Principles for Students with Learning
and Attention Deficit-Based Disorders

Presenter: Sarah Wille, Outlier Research & Evaluation at the University of Chicago

A 2014 publication entitled “The State of Learning Disabilities,” (www.ncld.org/wp-content/
uploads/2014/11/2014-State-of-LD.pdf) reports there are 2.4 million public school students in the
U.S. identified with a specific learning disability (such as in reading, written expression, math, or
language) and 6.4 million children diagnosed with an attention deficit disorder (like attention deficit
hyperactivity disorder). This report indicated that as many as one-third of the 2.4 million students
diagnosed with a specific learning disability also have a related attention deficit disorder.

As computing learning opportunities expand across the country, my colleagues and I are exploring
answers to a practical question: How do we make computer science (CS) more accessible and
engaging for these students? Many of these learners will be, and already are enrolled in formal and
informal CS learning opportunities. These students can be successful in learning CS if teachers are
equipped to provide appropriate instruction and support to meet their learning needs.

In our NSF-supported work, we are: (a) reviewing Code.org’s Computer Science Principles (CSP)
lessons for potential barriers to learning for students who learn differently; (b) starting with what
is known from research in other subject areas about teacher practices supportive of students with
learning differences and customizing those practices for CSP to pilot in a classroom at the Wolcott
School in Chicago (an independent preparatory high school for students with diagnosed learning
differences); (c) collecting data from students and the teacher about their experience with the
adjusted lessons and (d) revising instructional approach suggestions for teachers to share with other
CSP teachers and curriculum developers.

www.ncld.org/wp-content/uploads/2014/11/2014-State-of-LD.pdf

19 Making K-12 Computer Science Accessible March 8, 2017

Several recurring curricular challenges identified by our team’s CS teacher and students in the first
half of the CSP curriculum involve the following activities:

• learning new terminology (often as part of a lengthy presentation of information)
• reading and writing (which may occur as part of recurring class work, or formative and

summative assessment activities)
• collaborating (that often takes the form of think-pair-share, paired programming, or partnered

thinking and problem solving activities)
• discussing (either whole-class, teacher-led conversation, or within smaller group conversation)
• doing exploratory or project-based work (which is common throughout CSP lessons and part

of summative assessments, often with little explanation or instruction)
• programming (prevalent in the CSP course)

Our preliminary research is finding that when some of our alternate instructional approaches are
used during these activities, students who learn differently because of a learning or attention disorder
can more easily access and engage in the CSP lesson activities. We’ve just now beginning to share
some of these instructional recommendations for teachers to employ when they encounter these
types of activities in the CSP class. Our team is excited to continue our research and share practical
recommendations with teachers and curriculum developers more widely in the coming months. To
learn more details about this exploratory research, see outlier.uchicago.edu/accessCSP.

Dyslexic Children Programming: Overcoming Barriers Through Better
Interaction

By Rob Thompson, Steve Tanimoto

There is a long history of computer-based solutions for students with learning disabilities to use for
reading and mathematics [Hall et al 2000; Seo and Bryant 2009]. And yet, there is very little research
on how learning disabilities affect computational thinking and general programming [Powell et al
2004]. Help Agent for Writing Knowledge (HAWK) is reading and writing instructional software for
children with learning disabilities that’s been developed and tested for over five years. We then had
the opportunity to expand HAWK to include programming. Our research questions included these:

• In what ways does dyslexia limit an individual’s ability to program?
• Can these limitations be circumvented through design?
• Will a synthesis between reading/writing and coding instruction help children learn?

We built Kokopelli’s World (KW) as an expansion onto HAWK. It is a blocks-based beginner coding
environment organized into activities meant to teach basic concepts. The programs resemble standard
English text and are framed as stories. Storytelling is used as a framing device and motivator for
other programming environments. People remember story information better than plain text,
[Willingham 2006] and it is more accessible than games for some students [Kelleher and Pausch
2007]. KW mimics English in that blocks form grammatically correct sentences. Commands are in
third person declarative to match a storytelling style. Programs can be read aloud by the computer or
shown as plain text.

We tested KW with students with dyslexia aged 7-12 years old. Students completed 85% of the
activities they attempted. Students indicated that they liked coding and could use similar strategies
for coding and writing. We plan to continue to study this.

outlier.uchicago.edu/accessCSP

20 Making K-12 Computer Science Accessible March 8, 2017

References
1. Hall, T. E., Hughes, C. A., & Filbert, M. (2000). Computer assisted instruction in reading for

students with learning disabilities: A research synthesis. Education and Treatment of Children,
23(2), 173 – 193.

2. Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications
of the ACM, 50(7), 58 – 64.

3. Powell, N., Moore, D., Gray, J., Finlay, J., & Reaney, J. (2004). Dyslexia and learning computer
programming. Innovation in Teaching and Learning in Information and Computer Sciences, 3(2), 1 –
12.

4. Seo, Y., & Bryant D. (2009). Analysis of studies of the effects of computer-assisted instruction
on the mathematics performance of students with learning disabilities. Computers and
Education, 53(3), 913 – 928.

5. Willingham, D. T. (2006) Ask the cognitive scientist: The privileged status of story. American
Federation of Teachers. Retrieved from http://www.aft.org/periodical/american-educator/summer-2004/
ask-cognitive-scientist

http://www.aft.org/periodical/american-educator/summer-2004/ask-cognitive-scientist

21 Making K-12 Computer Science Accessible March 8, 2017

Working Group Summaries
Working groups focused on ways to improve the accessibility of materials. Summaries of these
discussions can be found below.

Group 1: Learning Disabilities

Here is a list of strategies and questions that arise when thinking about students with learning
disabilities.

• There is value about looking at what we know about instruction for students with learning
disabilities in other disciplines. In math, we start from the concrete level, then representative,
then abstract; we use schema-based problem solving, and strategies for mapping out problem.
Scaffolded inquiry is used in science. Paraphrasing would apply to code reading just like
reading other things. How we can apply that knowledge to computing?

• Facilitate direct communication between computer science (CS) and special education (SPED)
researchers, CS teachers, and SPED teachers.

• Utilize strategies from computer science collaborative learning research to support more
collaboration. What makes an effective group? How do you involve students with learning
disabilities (LD) in groups? Thinking about things like scripted conversations and roles.

• Seek feedback from teachers implementing these curricula.
• What can be done to improve the level of rigor in LD CS research? How to share resources?
• What strengths can we leverage that LD students bring to the table?
• How can we impact our curriculum to benefit LD students? When the classroom is online?
• How can analytics data be leveraged and what to collect?
• Bring together different curricula to step towards a universally designed one.
• We would benefit from a way to search what is out there, standardized terms and stronger

scientific rigor.

22 Making K-12 Computer Science Accessible March 8, 2017

Group 2: Potential Non-Visual Projects

Many ideas were formulated for non-visual projects that all students regardless of disability can
enjoy.

• Music Earsketch-like project
• Create an interesting radio show
• Create interesting music composition using music mixing
• Create Poetry- Haiku
• Build interesting chat bots
• Employ additional hardware, such as Talking Tactile Tablet, that are inherently accessible
• Create audio-animations such a demonstration of tree search
• Create Lego Robotics project using the technology developed by Stephanie Ludi [1]
• Some CS Unplugged activities can be modified to be non-visual (not coding project)
• Learning some basics of text analysis is inherently non-visual. Examples include computing

edit distance, frequency table, and some basic text compression. Since Grade 2 Braille is
compressed, learning how that can be automated could be done as a project.

• Hands on activities with Accessible Arduino might work.
• Tangible programming might work too such as SNAP circuits, Cubetto, and Torino.
• Smartphone and tablets have built-in screen readers that could be employed in projects.

Accessible development environments are needed. The sensors on smart phones and tablets
such as GPS, accelerometer, gyroscope and others could lead to interesting projects.

• Other possible projects might include Dot and Dash robots
• Blind people have built accessible games that can be found on RS-Games.

[1] Stephanie Ludi Ludi, Lindsey Ellis, and Scott Jordan. 2014. An accessible robotics programming
environment for visually impaired users. In Proceedings of ASSETS ‘14: International ACM
SIGACCESS Conference on Computers & Accessibility. ACM, New York, NY, USA, 237-238. http://dx.doi.
org/10.1145/2661334.2661385

Group 3. Accessible Classroom/Teaching

A number of ideas arose when discussing the accessible classroom and accessible teaching.
• Use accessible web-based products to structure classroom discussion and interaction.
• Teach accessibility as an important topic. The Teach Access website has a tutorial. There is

also an excellent accessible web design course at the AccessComputing website.
• Universal design such as captioned video, alternative assessments, alternative explanations of

concepts, clear directions, posting notes and slides, and scaffolding for assignments.
• Audio description for video.
• Statewide initiatives may be necessary to make sure the new CS course are mandated to be

accessible
• Work with organizations that teach CS such as Project Lead the Way, TEALS, Teach for

America, and others to help their teachers teach in an accessible way.

http://dx.doi.org/10.1145/2661334.2661385

23 Making K-12 Computer Science Accessible March 8, 2017

Group 4: Making Blocks Accessible

Block languages are currently not accessible to screen reader users. Some alternative ideas were
discussed.

• Non-visual ways are needed to convey information, speech and haptics perhaps.
• Tangible blocks might be useful like in Osmo.
• Some tangible products for blind students already exist: Torino.
• Support programming without syntax errors such as in Accessible Blockly.
•

Group 5: Supporting skills other than coding

Computer science is not just coding. It requires the understanding of many topics. Questions posted
by this group included how can we make

• data and data analysis accessible?
• graphs and charts accessible?
• animations and demonstrations accessible?
• basic problem solving accessible?

24 Making K-12 Computer Science Accessible March 8, 2017

25 Making K-12 Computer Science Accessible March 8, 2017

Communities of Practice
AccessCSForAll engages stakeholders that include national leaders within Communities of Practice
(CoPs). CoPs share perspectives and expertise and identify practices that promote the participation of
people with disabilities in STEM fields. Those most related to AccessCSForAll are described below.

Broadening Participation CoP

In this CoP, individuals who administer projects that serve to broaden participation in STEM fields
• discuss how to recruit participants with disabilities and accommodate them in their programs

and activities and how to make their offerings more accessible overall
• recruit their participants with disabilities into disability-related e-mentoring, internships,

academies, and workshops to complement their activities
• co-sponsor events and discuss potential new projects and share funding possibilities

Computing Faculty, Administrators, and Employers CoP

Computing professionals, faculty, and administrators as well as representatives from industry and
professional organizations use this CoP to increase their knowledge about disabilities and make
changes in computing departments that lead to more inclusive practices. Participants

• gain and share knowledge and help identify issues related to the underrepresentation of
people with disabilities in computing fields;

• help identify and field test Computing Department Accessibility Indicators to make computing
departments more welcoming and accessible to students with disabilities;

26 Making K-12 Computer Science Accessible March 8, 2017

• help organizations make their websites accessible to visitors with disabilities, their conferences
accessible to attendees with disabilities, and their conference programs inclusive of disability-
related topics;

• identify campus computing events to which students with disabilities might be invited; and
• discuss how to include accessibility topics in postsecondary computing curriculum.

You and your colleagues can join CoPs by sending the following information to doit@uw.edu:
• CoP(s) you would like to join
• name
• position/title
• institution
• postal address
• email address

For information about other CoPs affiliated with AccessCSForAll, consult our partner program
AccessComputing at www.uw.edu/accesscomputing/get-involved/educators-employers/communities-practice.

mailto: doit@uw.edu
www.uw.edu/accesscomputing/get-involved/educators-employers/communities-practice

27 Making K-12 Computer Science Accessible March 8, 2017

Resources
The AccessCSForAll website at www.uw.edu/accesscomputing/AccessCSForAll contains

• information about project goals, objectives, activities, and project partners
• evidence-based practices that support project goals and objectives
• resources for students with disabilities
• educational materials for teachers and administration

AccessCSForAll maintains a searchable database of frequently asked questions, case studies,
and promising practices related to how educators can fully include students with disabilities in
computing activities. The Knowledge Base can be accessed by following the “Search Knowledge
Base” link on the AccessCSForAll website.

The Knowledge Base is an excellent resource for ideas that can be implemented in computing
programs in order to better serve students with disabilities. In particular, the promising practices
articles serve to spread the word about practices that show evidence of improving the participation of
people with disabilities in computing.

Examples of Knowledge Base questions include the following:
• What are specific computer applications that can assist students with learning disabilities?
• How can K-12 educators promote the use of accessible technology in schools?
• Are there any web-based tutorials on accessibility?
• How can principles of universal design be used to construct a computer lab?
• How can K-12 computing instructors get support working with students with disabilities?

www.uw.edu/accesscomputing/AccessCSForAll

28 Making K-12 Computer Science Accessible March 8, 2017

Individuals and organizations are encouraged to propose questions and answers, case studies, and
promising practices. Contributions and suggestions can be sent to AccessCSForAll@uw.edu.

For more information on AccessCSForAll, universal design, and accessible computing education,
review the following websites, videos, and brochures.

• To find more information on universal design in education, visit the Center for Universal Design
website at www.uw.edu/doit/programs/center-universal-design-education/overview.

• To learn more about and get involved with AccessCSForAll, visit www.uw.edu/accesscomputing/
AccessCSForAll.

• To discover ways to encourage students with disabilities to pursue computing and how to
create an accessible inclusive environment for them, view AccessCSForAll videos at www.uw.edu/
accesscomputing/AccessCSForAll/videos.

• To read more discussions and presentations on including students with disabilities in ECS
and CSP courses, read Increasing the Participation of Students with Disabilities in Exploring
Computer Science and Computer Science Principles Courses at www.uw.edu/accesscomputing/
resources/increasing-participation-students-disabilities-exploring-computer-science-and-computer-science-
principles-courses.

• To learn more about accessible programming, explore Quorum at www.quorumlanguage.com.
• To learn more about and to get involved with a similar project, AccessComputing, visit www.uw.edu/

accesscomputing.
• To read profiles of computing professionals and students with disabilities, visit the Choose

Computing profiles at www.uw.edu/accesscomputing/get-informed/choosecomputing/profiles.

www.uw.edu/doit/programs/center-universal-design-education/overview
www.uw.edu/accesscomputing/AccessCSForAll
www.uw.edu/accesscomputing/AccessCSForAll/videos
www.uw.edu/accesscomputing/resources/increasing-participation-students-disabilities-exploring-computer-science-and-computer-science-principles-courses
www.quorumlanguage.com
www.uw.edu/accesscomputing/get-informed/choosecomputing/profiles

29 Making K-12 Computer Science Accessible March 8, 2017

Acknowledgments
AccessCSForAll capacity building activities are funded by the National Science Foundation (Grant
#CNS1440843). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the CBI presenters and publication authors and do not necessarily reflect the
views of the National Science Foundation.

DO-IT
University of Washington
Box 354842
Seattle, WA 98195-4842
AccessCSForAll@uw.edu
www.uw.edu/accesscomputing/AccessCSForAll
206-685-DOIT (3648) (voice/TTY)
888-972-DOIT (3648) (toll free voice/TTY)
206-221-4171 (FAX)
509-328-9331 (voice/TTY) Spokane

AccessCSForAll Principal Investigators: Richard E. Ladner, Ph.D.
and Andreas Stefik, Ph.D.
Co-principal investigator: Sheryl Burgstahler, Ph.D.

© 2017 University of Washington. Permission is granted to copy this publication for educational,
noncommercial purposes, provided the source is acknowledged.

www.uw.edu/accesscomputing/AccessCSForAll

	Structure Bookmarks
	Figure
	Making K-12 Computer Science Accessible
	Figure
	Proceedings of the March 2017 AccessCSForAll Capacity Building Institute (CBI)
	•
	About AccessCSForAll
	•
	Figure
	Contents
	Figure
	About the CBI
	•
	•
	CBI Agenda
	8:30 AM
	•
	•

	Figure
	Presentation Summaries
	Accessible Blockly: Making a Visual Coding Environment Accessible
	•
	1.

	•
	Blocks4All: Making block languages accessible using a touchscreen
	Tangibles + Audio stories = Programming + Fun
	Can programming become more accessible to visually impaired users?
	Can tangibles indicate shapes more intuitively?
	Can a tangibles and audio stories be used to teach programming?
	Questions we are looking to get feedback on are listed below:
	•
	References
	1.
	Supporting Visually-Impaired Programmers through Bootstrap
	UDL with Panopto
	Figure
	Figure
	•
	1.
	Students with Cognitive Disabilities and CS Education
	•
	•
	□
	□

	•
	□
	□

	Multi-sensory Computer Science Instruction to Provide Access to Students with Invisible Disabilities
	•
	•
	•
	•
	Accessible Computer Science Principles for Students with Learning and Attention Deficit-Based Disorders
	•
	Dyslexic Children Programming: Overcoming Barriers Through Better Interaction
	•
	1.
	Figure
	Working Group Summaries
	Group 1: Learning Disabilities
	•
	Group 2: Potential Non-Visual Projects
	•
	Group 3. Accessible Classroom/Teaching
	•
	Group 4: Making Blocks Accessible
	•
	Group 5: Supporting skills other than coding
	•
	Figure
	Communities of Practice
	Broadening Participation CoP
	•
	Computing Faculty, Administrators, and Employers CoP
	•
	•
	Figure
	Resources
	•
	•
	•
	Figure
	Acknowledgments
	Figure
	Figure
	Figure

